
SunnyDI Documentation
Release 0.0.0

Justin Smith

May 23, 2017

Contents

1 How to Use 3
1.1 Installation . 4
1.2 Advanced Usage . 4
1.3 SunnyDI api reference . 8

Python Module Index 15

i

ii

SunnyDI Documentation, Release 0.0.0

SunnyDI is an IoC container for managing and injecting dependencies in Python.

It is inspired by Autofac for .NET and Guice for java.

Contents 1

https://martinfowler.com/articles/injection.html
http://docs.autofac.org/en/latest/index.html
https://github.com/google/guice

SunnyDI Documentation, Release 0.0.0

2 Contents

CHAPTER 1

How to Use

For our example, we will create an IoC module for our HelloService.:

class HelloService(object):
def hello(self):

return 'hello'

Create a new configuration module that extends sunnydi.ioc.Module. A module defines how objects will be created,
destroyed and provided to other object instances in the IoC object graph. In the most simple configuration, we can just
bind a string name to our HelloService class type:

class HelloModule(Module):
def configure(self):

self.bind('hello_service')
.to(HelloService)

We can then create the injector and resolve our HelloService like this:

>>> hello_module = HelloModule()
>>> injector = hello_module.create_injector()
>>> hello_service = injector.get('hello_service')

>>> hello_service.hello()
'hello'

Resolved instances are provided via constructor arguments to consuming classes. For instance, given the following
class:

class MyClass(object):

def __init__(self, hello_service):
self._hello_service = hello_service

def do_hello(self):
return self._hello_service.hello()

3

SunnyDI Documentation, Release 0.0.0

An instance of MyClass can be resolved with an instance of HelloService due to the service’s binding name matching
the parameter defined in the MyClass constructor:

>>> my_class_instance = injector.get(MyClass)
>>> my_class_instance.do_hello()
'hello'

For advanced usage, checkout the docs

Installation

Binaries are available via pip. Source code is available on github.

Pip Install

From the command line:

$ pip install sunnydi

Get the Source Code

Clone the public repository from github:

$ git clone git@github.com:thomasstreet/sunnydi.git

Advanced Usage

Advanced features and load balancer configuration options.

Configuring the LoadBalancer

The LoadBalancer takes a number of configuration options in order to suit different environments. At its most
basic, it just requires a ServerList implementation:

import ballast
from ballast.discovery.static import StaticServerList

servers = StaticServerList(['127.0.0.1', '127.0.0.2'])
load_balancer = ballast.LoadBalancer(servers)

Now, you can configure a Service with the load balancer:

my_service = ballast.Service(load_balancer)

Make an HTTP request as you would with requests - using a relative path instead of an absolute URL:

response = my_lb_service.get('/v1/path/to/resource')
<Response[200]>

4 Chapter 1. How to Use

http://ballast.readthedocs.io
https://pip.pypa.io/en/stable/installing/
https://github.com/thomasstreet/sunnydi

SunnyDI Documentation, Release 0.0.0

The following options are enabled by default when no other options are specified:

from ballast import rule, ping

ballast.LoadBalancer(
servers, # required
rule=rule.RoundRobinRule(),
ping_strategy=ping.SerialPingStrategy(),
ping=ping.SocketPing()

)

Dynamic Server Discovery

Servers can be discovered dynamically by configuring one of the dynamic ServerList implementations (or creating
your own) on the LoadBalancer. The ServerList is periodically queried by the LoadBalancer for updated
Server objects.

DNS

NOTE: Using DNS features requires additional dependencies. From the command line, install the DNS dependencies
from pip:

$ pip install ballast[dns]

To use DNS to query Server instances, configure a LoadBalancer with either a DnsARecordList to query A
records

import ballast
from ballast.discovery.ns import DnsARecordList

servers = DnsARecordList('my.service.internal.')
load_balancer = ballast.LoadBalancer(servers)

Or use DnsServiceRecordList to query SRV records

import ballast
from ballast.discovery.ns import DnsServiceRecordList

servers = DnsServiceRecordList('my.service.internal.')
load_balancer = ballast.LoadBalancer(servers)

Consul REST API

To use Consul (via HTTP REST API) to query Server instances, configure a LoadBalancer with
ConsulRestRecordList

import ballast
from ballast.discovery.consul import ConsulRestRecordList

servers = ConsulRestRecordList('http://my.consul.url:8500', 'my-service')
load_balancer = ballast.LoadBalancer(servers)

1.2. Advanced Usage 5

SunnyDI Documentation, Release 0.0.0

Load-Balancing Rules

The logic of how to choose the next server in the load-balancing pool is configurable by specifying a Rule implemen-
tation.

RoundRobinRule

The RoundRobinRule chooses each server in the load-balancing pool an equal number of times by simply looping
through the collection of servers in the pool:

import ballast
from ballast import rule

servers = ... # defined earlier

my_rule = rule.RoundRobinRule()
load_balancer = ballast.LoadBalancer(servers, my_rule)

PriorityWeightedRule

The PriorityWeightedRule chooses each server in the load-balancing pool based on a combination of priority
and weight.

Given a pool of 5 servers with the following priority/weight values, this rule will choose priority 1 servers exclusively
(unless/until all priority 1 servers are down, in which case it will move on to priority 2 servers):

priority 1
Server(address='127.0.0.1', priority=1, weight=60)
Server(address='127.0.0.2', priority=1, weight=20)
Server(address='127.0.0.3', priority=1, weight=20)

priority 2 (backups)
Server(address='127.0.0.4', priority=2, weight=1)
Server(address='127.0.0.5', priority=2, weight=1)

Of the current priority 1 servers, the choice of server will be determined by its weight as a ratio. 60% of the traffic will
go to 127.0.0.1 while the remaining 40% will be split evently between 127.0.0.2 and 127.0.0.3 (both have the same
weight):

Server(address='127.0.0.1', priority=1, weight=60)

If all priority 1 servers are down, this rule will split traffic between 127.0.0.4 and 127.0.0.5 equally (both have the
same weight).

For this rule to work correctly, it must be paired with a ServerList that provides priority and weight as part of its
discovery (e.g. DnsServiceRecordList):

import ballast
from ballast import rule
from ballast.discovery.ns import DnsServiceRecordList

use a ServerList that provides 'priority' and 'weight'
servers = DnsServiceRecordList('my.service.internal.')

my_rule = rule.PriorityWeightedRule()
load_balancer = ballast.LoadBalancer(servers, my_rule)

6 Chapter 1. How to Use

SunnyDI Documentation, Release 0.0.0

Pinging Servers

The LoadBalancer periodically queries for servers as well as attempts to ping each server to ensure it’s up, running
and responding. This can be configured via the following standard Ping implementations (or you can create your
own):

DummyPing

DummyPing doesn’t actually ping any servers, it just assumes the server is active - useful for testing or when otherwise
not wanting to actually ping servers in the load balancing pool. Not recommended for production.

SocketPing

SocketPing attempts to open a socket connection to the server. If the connection was successful, the ping is
considered successful.

UrlPing

UrlPing attempts to make a GET request to the server. If the request returns a 2xx status code, the ping is considered
successful.

Ping Strategies

The LoadBalancer initiates its periodic ping using a configurable PingStrategy. The following strategies are
available (or you can create your own):

SerialPingStrategy

The SerialPingStrategy iterates through each Server attempting to ping each one sequentially. The time it
takes for this strategy to complete is ping time x number of servers. It is recommended to use this strategy only when
there are a (known) small number of servers.

ThreadPoolPingStrategy

The ThreadPoolPingStrategy iterates through each Server attempting to ping each server in parallel using
a ThreadPool. The time it takes for this strategy to complete is not much longer than the time it takes for a single
ping to complete.

NOTE: this class does not play well when using gevent. It’s recommended to use the GeventPingStrategy
instead for gevent-based systems.

MultiprocessingPoolPingStrategy

The MultiprocessingPoolPingStrategy iterates through each Server attempting to ping each server in
parallel using a Pool. The time it takes for this strategy to complete is not much longer than the time it takes for a
single ping to complete, however, on systems where a large number of servers are queried, it’s recommended to use
ThreadPoolPingStrategy instead.

NOTE: this class does not play well when using gevent. It’s recommended to use the GeventPingStrategy
instead for gevent-based systems.

1.2. Advanced Usage 7

http://www.gevent.org/
http://www.gevent.org/

SunnyDI Documentation, Release 0.0.0

SunnyDI api reference

Inversion of Control

Framework for configuring and composing object graphs injecting their associated dependencies.

Using inversion-of-control rather than manually building object graphs can reduce an application’s maintenance bur-
den.

For the philosophical reasoning behind such an architecture, see Martin Fowler’s [article](http://martinfowler.com/
articles/injection.html).

Getting Started

In order to create an injector, we must first create and configure a sunnydi.ioc.Module. A module defines how instances
will be built and provided to other instances in the object graph.

For our example, we will create a module for our HelloService.

#!python class HelloService(object):

def hello(self): return ‘hello’

Now, we create a custom configuration module that extends sunnydi.ioc.Module. In the most simple configuration, we
just bind a contract name to our HelloService class type:

#!python class HelloModule(Module):

def configure(self):

self.bind(‘hello_service’) .to(HelloService)

We can then create an injector and resolve our HelloService like this:

#!python hello_module = HelloModule() injector = hello_module.create_injector() hello_service = injec-
tor.get(‘hello_service’)

>>> hello_service.hello()
'hello'

Advanced Configuration

More often than not, classes will have dependencies on other classes, and those classes will have additional dependen-
cies. This results in potentially large object graphs that becomes very difficult to manage manually. On top of that, we
probably only need to create some classes once for the lifetime of the application.

The below configuration illustrates how to accomplish this with the IoC configuration Module:

#!python class GoodbyeService(object):

param name matches our binding contract name def __init__(self, hello_service):

self._hello_service = hello_service

def goodbye(self): return ‘%s, goodbye’ % self._hello_service.hello()

class HelloModule(Module):

def configure(self):

we only ever need one instance of this service self.bind(‘hello_service’)

8 Chapter 1. How to Use

http://martinfowler.com/articles/injection.html
http://martinfowler.com/articles/injection.html

SunnyDI Documentation, Release 0.0.0

.to(HelloService) .as_singleton()

we only ever need one instance of this service self.bind(‘goodbye_service’)

.to(GoodbyeService) .as_singleton()

...

hello_module = HelloModule() injector = hello_module.create_injector()

resolving the service multiple times # returns the same instance due to as_singleton() goodbye_service
= injector.get(‘goodbye_service’) goodbye_service2 = injector.get(‘goodbye_service’)

>>> assert goodbye_service == goodbye_service2
True

>>> goodbye_service.goodbye()
'hello, goodbye'

Occasionally, manual configuration of a class is necessary in whole or in part. In these cases, the module can configure
a factory method to provide the instance, or provide an instance as-is.

#!python class HelloModule(Module):

def configure(self):

new up an instance on our own # this instance is de facto singleton hello_service =
HelloService() # additional configuration ... self.bind(‘hello_service’)

.to_instance(hello_service)

this service uses a factory to create the instance # factory can be static,
instance, or global function # factory can also be marked as singleton
self.bind(‘goodbye_service’)

.to_factory(self._create_goodbye_service) .as_singleton()

@staticmethod def _create_goodbye_service(hello_service):

goodbye_service = GoodbyeService(hello_service) # additional configuration ... re-
turn goodbye_service

Resolving Instances

Class instances can be resolved directly from the injector via their contract name(s) or class type(s). Multiple contracts
may be resolved by adding additional parameters to the get() call.

#!python

get one goodbye_service = injector.get(‘goodbye_service’)

get many (hello_service, goodbye_service) = injector.get(‘hello_service’, ‘goodbye_service’)

get can also take a class type goodbye_service = injector.get(GoodbyeService)

For CLI applications, resolving the main application class should be the only call to get() necessary (the remaining
object graph should be populated via the injector).

For non-CLI or other applications in which object lifecycle isn’t fully controlled, the sunnydi.ioc.inject decorator may
be used on a class’s __init__() method (MyClass does _not_ need to be configured in the module).

The sunnydi.ioc.inject decorator is not necessary for classes resolved via the injector (only for classes outside the
injection context).

1.3. SunnyDI api reference 9

SunnyDI Documentation, Release 0.0.0

#!python class MyClass(object):

@inject def __init__(self, hello_service, goodbye_service):

self._hello_service = hello_service self._goodbye_service = goodbye_service

same as calling my_class = injector.get(MyClass)

Global Injector

In some cases, there may be a need to import and use the sunnydi.ioc.Injector from the global context.

#!python from sunnydi.ioc import get_injector

The sunnydi.ioc.Injector can also be resolved from the sunnydi.ioc.inject decorator:

#!python @inject def __init__(self, injector):

pass

same as calling injector = injector.get(‘injector’)

In order to use the global sunnydi.ioc.get_injector or the sunnydi.ioc.inject decorator, we must register the configura-
tion module:

#!python hello_module = HelloModule() injector = hello_module.create_injector()
hello_module.register(injector)

or (if we don’t need the sunnydi.ioc.Injector instance right away):

#!python hello_module = HelloModule() hello_module.register()

exception sunnydi.ioc.DependencyResolutionException
Raised when an item could not be resolved from an sunnydi.ioc.Injector.

exception sunnydi.ioc.ComponentNotRegisteredException
Raised when a component binding was not registered with an sunnydi.ioc.Injector.

exception sunnydi.ioc.ScopeDisposedException
Raised when an sunnydi.ioc.InjectionScope has been disposed, but a client has attempted to resolve a component
from it.

class sunnydi.ioc.Module(name=None)
Configuration module for defining dependency-injection bindings.

add_module(module)
Add a configuration sub-module to this module.

•module (sunnydi.ioc.Module): A sub-module to add.

bind(contract)
Create a new binding with the specified contract name.

•contract (basestring): The contract name to bind to.

A binding builder.

configure()
Configure the IoC module, creating any necessary injection bindings.

create_injector()
Create the dependency sunnydi.ioc.Injector using the configured bindings.

A configured sunnydi.ioc.Injector.

10 Chapter 1. How to Use

SunnyDI Documentation, Release 0.0.0

name
The module name (or DEFAULT_INJECTOR).

register(injector=None)
Register the specified sunnydi.ioc.Injector with the global scope. If injector parameter is not specified,
create a new sunnydi.ioc.Injector and register it.

•injector (sunnydi.ioc.Injector): The injector to register or create and register a new sun-
nydi.ioc.Injector if None.

class sunnydi.ioc.Injector(bindings=None)
Dependency injector used for resolving dependencies.

This class is typically not created explicitly, rather it is created by configuring a sunnydi.ioc.Module.

get(*args, **kwargs)
Resolve an instance or instances of the specified contracts.

•contract (basestring): One or more contract names to resolve.

•class_type (type): One or more classes to resolve with constructor parameters injected.

•class_args (tuple): (Optional) Collection of arguments to pass to a resolving class’s positional ar-
guments (*args) instead of resolving parameters via the injector.

•class_kwargs (dict): (Optional) Collection of key-word arguments to pass to a resolving class’s
keyword arguments (*kwargs) instead of resolving parameters via the injector.

The resolved object instance or tuple of instances if multiple parameters specified.

•sunnydi.ioc.DependencyResolutionException: If no contracts or types are specified or if None type
is specified.

•sunnydi.ioc.ComponentNotRegisteredException: If a binding for the specified contract could not be
found.

is_scope(scope_id)
Whether or not a child sunnydi.ioc.InjectionScope with the specified scope id exists for this injector.

Will only return True for scopes created directly from this injector (not child scopes).

•scope_id (basestring): The unique scope identifier.

True if a scope with the specified id exists, False if no scope exists.

scope(scope_id=None)
Create a new child sunnydi.ioc.InjectionScope with the specified scope id or return a previously created
child scope.

It’s recommended to use this method as a context manager in order to properly dispose of the scope when
it’s finished being used.

#!python with injector.scope(‘my-scope-id’) as my_scope:

obj = my_scope.get(‘my_contract_name’)

If not being used as a context manager, it is mandatory to manually dispose of the scope via the sun-
nydi.ioc.InjectionScope.dispose() method when finished using the scope. Failure to do so will result in
memory leaks within the application.

#!python my_scope = injector.scope(‘my-scope-id’) obj = my_scope.get(‘my_contract_name’)
my_scope.dispose()

•scope_id (basestring): (Optional) The unique scope identifier. If no scope id is specified, a ran-
dom uuid.UUID is used to create a new scope id.

1.3. SunnyDI api reference 11

SunnyDI Documentation, Release 0.0.0

An sunnydi.ioc.InjectionScope

class sunnydi.ioc.InjectionScope(scope_id, bindings, parent_scope)
Dependency injector used for resolving dependencies within a limited scope.

This class is typically not created explicitly, rather it is created from a parent sunnydi.ioc.Injector by calling
scope().

dispose()

get(*args, **kwargs)
Resolve an instance or instances of the specified contracts within the specified scope.

•contract (basestring): One or more contract names to resolve.

•class_type (type): One or more classes to resolve with constructor parameters injected.

•class_args (tuple): (Optional) Collection of arguments to pass to a resolving class’s positional ar-
guments (*args) instead of resolving parameters via the injector.

•class_kwargs (dict): (Optional) Collection of key-word arguments to pass to a resolving class’s
keyword arguments (*kwargs) instead of resolving parameters via the injector.

The resolved object instance or tuple of instances if multiple parameters specified.

•sunnydi.ioc.DependencyResolutionException: If no contracts or types are specified or if None type
is specified.

•sunnydi.ioc.ComponentNotRegisteredException: If a binding for the specified contract could not be
found.

•sunnydi.ioc.ScopeDisposedException: If the scope has been disposed.

scope_id

sunnydi.ioc.inject(f)
Inject the dependencies for the decorated function.

Each of the function’s parameter names should match a configured binding name.

If a parameter is included directly, injection is skipped for that parameter.

sunnydi.ioc.get(*args, **kwargs)
Resolve an instance or instances of the specified contracts.

•contract (basestring): One or more contract names to resolve.

•class_type (type): One or more classes to resolve with constructor parameters injected.

•class_args (tuple): (Optional) Collection of arguments to pass to a resolving class’s positional argu-
ments (*args) instead of resolving parameters via the injector.

•class_kwargs (dict): (Optional) Collection of key-word arguments to pass to a resolving class’s key-
word arguments (*kwargs) instead of resolving parameters via the injector.

The resolved object instance or tuple of instances if multiple parameters specified.

Raises:

•sunnydi.ioc.DependencyResolutionException: If no contracts or types are specified or if None type is
specified.

•sunnydi.ioc.ComponentNotRegisteredException: If a binding for the specified contract could not be
found.

12 Chapter 1. How to Use

SunnyDI Documentation, Release 0.0.0

sunnydi.ioc.scope(scope_id=None)
Create a new child sunnydi.ioc.InjectionScope from the default injector, with the specified scope id or return a
previously created child scope.

It’s recommended to use this method as a context manager in order to properly dispose of the scope when it’s
finished being used.

#!python import ioc with ioc.scope(‘my-scope-id’) as my_scope:

obj = my_scope.get(‘my_contract_name’)

If not being used as a context manager, it is mandatory to manually dispose of the scope via the sun-
nydi.ioc.InjectionScope.dispose() method when finished using the scope. Failure to do so will result in memory
leaks within the application.

#!python my_scope = ioc.scope(‘my-scope-id’) obj = my_scope.get(‘my_contract_name’)
my_scope.dispose()

•scope_id (basestring): (Optional) The unique scope identifier. If no scope id is specified, a random
uuid.UUID is used to create a new scope id.

An sunnydi.ioc.InjectionScope

sunnydi.ioc.get_injector(name=’Default’)
Get the sunnydi.ioc.Injector registered with the specified name, the default injector if no name is specified, or
None if no injector is globally registered.

•name (basestring): The injector name (or DEFAULT_INJECTOR).

The named sunnydi.ioc.Injector (or the default injector if name is not specified)

• genindex

• modindex

• search

1.3. SunnyDI api reference 13

SunnyDI Documentation, Release 0.0.0

14 Chapter 1. How to Use

Python Module Index

b
ballast.service, 4

s
sunnydi, 8
sunnydi.ioc, 8

15

SunnyDI Documentation, Release 0.0.0

16 Python Module Index

Index

A
add_module() (sunnydi.ioc.Module method), 10

B
ballast.service (module), 4
bind() (sunnydi.ioc.Module method), 10

C
ComponentNotRegisteredException, 10
configure() (sunnydi.ioc.Module method), 10
create_injector() (sunnydi.ioc.Module method), 10

D
DependencyResolutionException, 10
dispose() (sunnydi.ioc.InjectionScope method), 12

G
get() (in module sunnydi.ioc), 12
get() (sunnydi.ioc.InjectionScope method), 12
get() (sunnydi.ioc.Injector method), 11
get_injector() (in module sunnydi.ioc), 13

I
inject() (in module sunnydi.ioc), 12
InjectionScope (class in sunnydi.ioc), 12
Injector (class in sunnydi.ioc), 11
is_scope() (sunnydi.ioc.Injector method), 11

M
Module (class in sunnydi.ioc), 10

N
name (sunnydi.ioc.Module attribute), 10

R
register() (sunnydi.ioc.Module method), 11

S
scope() (in module sunnydi.ioc), 12

scope() (sunnydi.ioc.Injector method), 11
scope_id (sunnydi.ioc.InjectionScope attribute), 12
ScopeDisposedException, 10
sunnydi (module), 8
sunnydi.ioc (module), 8

17

	How to Use
	Installation
	Advanced Usage
	SunnyDI api reference

	Python Module Index

