

SunnyDI IoC Container

[image: https://img.shields.io/pypi/v/sunnydi.svg]
 [https://pypi.python.org/pypi/sunnydi][image: https://img.shields.io/pypi/status/sunnydi.svg]
 [https://pypi.python.org/pypi/sunnydi][image: https://travis-ci.org/thomasstreet/sunnydi.svg?branch=master]
 [https://travis-ci.org/thomasstreet/sunnydi][image: https://coveralls.io/repos/github/thomasstreet/sunnydi/badge.svg?branch=master]
 [https://coveralls.io/github/thomasstreet/sunnydi?branch=master][image: Documentation Status]
 [http://sunnydi.readthedocs.io/en/latest/?sunnydi=latest]SunnyDI is an IoC container [https://martinfowler.com/articles/injection.html] for
managing and injecting dependencies in Python.

It is inspired by Autofac [http://docs.autofac.org/en/latest/index.html] for .NET
and Guice [https://github.com/google/guice] for java.

How to Use

For our example, we will create an IoC module for our HelloService.:

class HelloService(object):
 def hello(self):
 return 'hello'

Create a new configuration module that extends sunnydi.ioc.Module.
A module defines how objects will be created, destroyed and provided to other object instances in the IoC object graph.
In the most simple configuration, we can just bind a string name to our HelloService class type:

class HelloModule(Module):
 def configure(self):
 self.bind('hello_service')
 .to(HelloService)

We can then create the injector and resolve our HelloService like this:

>>> hello_module = HelloModule()
>>> injector = hello_module.create_injector()
>>> hello_service = injector.get('hello_service')

>>> hello_service.hello()
'hello'

Resolved instances are provided via constructor arguments to consuming classes.
For instance, given the following class:

class MyClass(object):

 def __init__(self, hello_service):
 self._hello_service = hello_service

 def do_hello(self):
 return self._hello_service.hello()

An instance of MyClass can be resolved with an instance of HelloService due to
the service’s binding name matching the parameter defined in the MyClass constructor:

>>> my_class_instance = injector.get(MyClass)
>>> my_class_instance.do_hello()
'hello'

For advanced usage, checkout the docs [http://ballast.readthedocs.io]

	Installation
	Pip Install

	Get the Source Code

	Advanced Usage
	Configuring the LoadBalancer

	Dynamic Server Discovery

	Load-Balancing Rules

	Pinging Servers

	Ping Strategies

	SunnyDI api reference
	Inversion of Control

	Index

	Module Index

	Search Page

Installation

Binaries are available via pip [https://pip.pypa.io/en/stable/installing/].
Source code is available on github [https://github.com/thomasstreet/sunnydi].

Pip Install

From the command line:

$ pip install sunnydi

Get the Source Code

Clone the public repository from github:

$ git clone git@github.com:thomasstreet/sunnydi.git

Advanced Usage

Advanced features and load balancer configuration options.

Configuring the LoadBalancer

The LoadBalancer takes a number of configuration options in order to suit different environments.
At its most basic, it just requires a ServerList implementation:

import ballast
from ballast.discovery.static import StaticServerList

servers = StaticServerList(['127.0.0.1', '127.0.0.2'])
load_balancer = ballast.LoadBalancer(servers)

Now, you can configure a Service with the load balancer:

my_service = ballast.Service(load_balancer)

Make an HTTP request as you would with requests - using a relative path instead of an absolute URL:

response = my_lb_service.get('/v1/path/to/resource')
<Response[200]>

The following options are enabled by default when no other options are specified:

from ballast import rule, ping

ballast.LoadBalancer(
 servers, # required
 rule=rule.RoundRobinRule(),
 ping_strategy=ping.SerialPingStrategy(),
 ping=ping.SocketPing()
)

Dynamic Server Discovery

Servers can be discovered dynamically by configuring one of the dynamic ServerList
implementations (or creating your own) on the LoadBalancer. The ServerList
is periodically queried by the LoadBalancer for updated Server objects.

DNS

NOTE: Using DNS features requires additional dependencies.
From the command line, install the DNS dependencies from pip:

$ pip install ballast[dns]

To use DNS to query Server instances, configure a LoadBalancer with either a
DnsARecordList to query A records

import ballast
from ballast.discovery.ns import DnsARecordList

servers = DnsARecordList('my.service.internal.')
load_balancer = ballast.LoadBalancer(servers)

Or use DnsServiceRecordList to query SRV records

import ballast
from ballast.discovery.ns import DnsServiceRecordList

servers = DnsServiceRecordList('my.service.internal.')
load_balancer = ballast.LoadBalancer(servers)

Consul REST API

To use Consul (via HTTP REST API) to query Server instances, configure a LoadBalancer
with ConsulRestRecordList

import ballast
from ballast.discovery.consul import ConsulRestRecordList

servers = ConsulRestRecordList('http://my.consul.url:8500', 'my-service')
load_balancer = ballast.LoadBalancer(servers)

Load-Balancing Rules

The logic of how to choose the next server in the load-balancing pool is configurable by specifying a
Rule implementation.

RoundRobinRule

The RoundRobinRule chooses each server in the load-balancing pool an equal number of times by
simply looping through the collection of servers in the pool:

import ballast
from ballast import rule

servers = ... # defined earlier

my_rule = rule.RoundRobinRule()
load_balancer = ballast.LoadBalancer(servers, my_rule)

PriorityWeightedRule

The PriorityWeightedRule chooses each server in the load-balancing pool based on a combination of
priority and weight.

Given a pool of 5 servers with the following priority/weight values, this rule will choose priority 1 servers
exclusively (unless/until all priority 1 servers are down, in which case it will move on to priority 2 servers):

priority 1
Server(address='127.0.0.1', priority=1, weight=60)
Server(address='127.0.0.2', priority=1, weight=20)
Server(address='127.0.0.3', priority=1, weight=20)

priority 2 (backups)
Server(address='127.0.0.4', priority=2, weight=1)
Server(address='127.0.0.5', priority=2, weight=1)

Of the current priority 1 servers, the choice of server will be determined by its weight as a ratio.
60% of the traffic will go to 127.0.0.1 while the remaining 40% will be split evently between 127.0.0.2 and
127.0.0.3 (both have the same weight):

Server(address='127.0.0.1', priority=1, weight=60)

If all priority 1 servers are down, this rule will split traffic between 127.0.0.4 and 127.0.0.5 equally
(both have the same weight).

For this rule to work correctly, it must be paired with a ServerList
that provides priority and weight as part of its discovery (e.g. DnsServiceRecordList):

import ballast
from ballast import rule
from ballast.discovery.ns import DnsServiceRecordList

use a ServerList that provides 'priority' and 'weight'
servers = DnsServiceRecordList('my.service.internal.')

my_rule = rule.PriorityWeightedRule()
load_balancer = ballast.LoadBalancer(servers, my_rule)

Pinging Servers

The LoadBalancer periodically queries for servers as well as attempts to ping each server to ensure
it’s up, running and responding. This can be configured via the following standard Ping
implementations (or you can create your own):

DummyPing

DummyPing doesn’t actually ping any servers, it just assumes the server is active - useful for
testing or when otherwise not wanting to actually ping servers in the load balancing pool. Not recommended for production.

SocketPing

SocketPing attempts to open a socket connection to the server. If the connection was successful,
the ping is considered successful.

UrlPing

UrlPing attempts to make a GET request to the server. If the request returns a 2xx status
code, the ping is considered successful.

Ping Strategies

The LoadBalancer initiates its periodic ping using a configurable PingStrategy.
The following strategies are available (or you can create your own):

SerialPingStrategy

The SerialPingStrategy iterates through each Server attempting to ping
each one sequentially. The time it takes for this strategy to complete is ping time x number of servers.
It is recommended to use this strategy only when there are a (known) small number of servers.

ThreadPoolPingStrategy

The ThreadPoolPingStrategy iterates through each Server attempting to ping
each server in parallel using a ThreadPool. The time it takes for this strategy to complete
is not much longer than the time it takes for a single ping to complete.

NOTE: this class does not play well when using gevent [http://www.gevent.org/]. It’s recommended to use the
GeventPingStrategy instead for gevent-based systems.

MultiprocessingPoolPingStrategy

The MultiprocessingPoolPingStrategy iterates through each Server attempting to ping
each server in parallel using a Pool. The time it takes for this strategy to complete
is not much longer than the time it takes for a single ping to complete, however, on systems where a large number of servers
are queried, it’s recommended to use ThreadPoolPingStrategy instead.

NOTE: this class does not play well when using gevent [http://www.gevent.org/]. It’s recommended to use the
GeventPingStrategy instead for gevent-based systems.

SunnyDI api reference

Inversion of Control

Framework for configuring and composing object graphs injecting
their associated dependencies.

Using inversion-of-control rather than manually building object graphs can
reduce an application’s maintenance burden.

For the philosophical reasoning behind such an architecture, see Martin
Fowler’s [article](http://martinfowler.com/articles/injection.html).

Getting Started

In order to create an injector, we must first create and configure a
sunnydi.ioc.Module. A module defines how instances will
be built and provided to other instances in the object graph.

For our example, we will create a module for our HelloService.

#!python
class HelloService(object):

	def hello(self):

	return ‘hello’

Now, we create a custom configuration module that extends
sunnydi.ioc.Module. In the most simple configuration,
we just bind a contract name to our HelloService class type:

#!python
class HelloModule(Module):

	def configure(self):

	
	self.bind(‘hello_service’)

	.to(HelloService)

We can then create an injector and resolve our HelloService like this:

#!python
hello_module = HelloModule()
injector = hello_module.create_injector()
hello_service = injector.get(‘hello_service’)

>>> hello_service.hello()
'hello'

Advanced Configuration

More often than not, classes will have dependencies on other classes,
and those classes will have additional dependencies. This results in
potentially large object graphs that becomes very difficult to manage
manually. On top of that, we probably only need to create some classes
once for the lifetime of the application.

The below configuration illustrates how to accomplish this with the
IoC configuration Module:

#!python
class GoodbyeService(object):

param name matches our binding contract name
def __init__(self, hello_service):

self._hello_service = hello_service

	def goodbye(self):

	return ‘%s, goodbye’ % self._hello_service.hello()

class HelloModule(Module):

def configure(self):

we only ever need one instance of this service
self.bind(‘hello_service’)

.to(HelloService)
.as_singleton()

we only ever need one instance of this service
self.bind(‘goodbye_service’)

.to(GoodbyeService)
.as_singleton()

...

hello_module = HelloModule()
injector = hello_module.create_injector()

resolving the service multiple times
returns the same instance due to as_singleton()
goodbye_service = injector.get(‘goodbye_service’)
goodbye_service2 = injector.get(‘goodbye_service’)

>>> assert goodbye_service == goodbye_service2
True

>>> goodbye_service.goodbye()
'hello, goodbye'

Occasionally, manual configuration of a class is necessary in
whole or in part. In these cases, the module can configure a
factory method to provide the instance, or provide an instance as-is.

#!python
class HelloModule(Module):

def configure(self):

new up an instance on our own
this instance is de facto singleton
hello_service = HelloService()
additional configuration
...
self.bind(‘hello_service’)

.to_instance(hello_service)

this service uses a factory to create the instance
factory can be static, instance, or global function
factory can also be marked as singleton
self.bind(‘goodbye_service’)

.to_factory(self._create_goodbye_service)
.as_singleton()

@staticmethod
def _create_goodbye_service(hello_service):

goodbye_service = GoodbyeService(hello_service)
additional configuration
...
return goodbye_service

Resolving Instances

Class instances can be resolved directly from the injector via their
contract name(s) or class type(s). Multiple contracts may be resolved
by adding additional parameters to the get() call.

#!python

get one
goodbye_service = injector.get(‘goodbye_service’)

get many
(hello_service, goodbye_service) =
injector.get(‘hello_service’, ‘goodbye_service’)

get can also take a class type
goodbye_service = injector.get(GoodbyeService)

For CLI applications, resolving the main application class should be the only
call to get() necessary (the remaining object graph should be populated
via the injector).

For non-CLI or other applications in which object lifecycle isn’t fully
controlled, the sunnydi.ioc.inject decorator may be used
on a class’s __init__() method (MyClass does _not_ need to be configured
in the module).

The sunnydi.ioc.inject decorator is not necessary for classes
resolved via the injector (only for classes outside the injection context).

#!python
class MyClass(object):

@inject
def __init__(self, hello_service, goodbye_service):

self._hello_service = hello_service
self._goodbye_service = goodbye_service

same as calling
my_class = injector.get(MyClass)

Global Injector

In some cases, there may be a need to import and use the
sunnydi.ioc.Injector from the global context.

#!python
from sunnydi.ioc import get_injector

The sunnydi.ioc.Injector can also be resolved from the
sunnydi.ioc.inject decorator:

#!python
@inject
def __init__(self, injector):

pass

same as calling
injector = injector.get(‘injector’)

In order to use the global sunnydi.ioc.get_injector or the
sunnydi.ioc.inject decorator,
we must register the configuration module:

#!python
hello_module = HelloModule()
injector = hello_module.create_injector()
hello_module.register(injector)

or (if we don’t need the sunnydi.ioc.Injector
instance right away):

#!python
hello_module = HelloModule()
hello_module.register()

	
exception sunnydi.ioc.DependencyResolutionException

	Raised when an item could not be resolved from
an sunnydi.ioc.Injector.

	
exception sunnydi.ioc.ComponentNotRegisteredException

	Raised when a component binding was not registered
with an sunnydi.ioc.Injector.

	
exception sunnydi.ioc.ScopeDisposedException

	Raised when an sunnydi.ioc.InjectionScope
has been disposed, but a client has attempted to resolve
a component from it.

	
class sunnydi.ioc.Module(name=None)

	Configuration module for defining dependency-injection bindings.

	
add_module(module)

	Add a configuration sub-module to this module.

	module (sunnydi.ioc.Module): A sub-module to add.

	
bind(contract)

	Create a new binding with the specified contract name.

	contract (basestring): The contract name to bind to.

A binding builder.

	
configure()

	Configure the IoC module, creating any necessary injection bindings.

	
create_injector()

	Create the dependency sunnydi.ioc.Injector
using the configured bindings.

A configured sunnydi.ioc.Injector.

	
name

	The module name (or DEFAULT_INJECTOR).

	
register(injector=None)

	Register the specified sunnydi.ioc.Injector
with the global scope. If injector parameter is not specified,
create a new sunnydi.ioc.Injector and register it.

	
	injector (sunnydi.ioc.Injector):

	The injector to register or create and register
a new sunnydi.ioc.Injector if None.

	
class sunnydi.ioc.Injector(bindings=None)

	Dependency injector used for resolving dependencies.

This class is typically not created explicitly, rather it is created by
configuring a sunnydi.ioc.Module.

	
get(*args, **kwargs)

	Resolve an instance or instances of the specified contracts.

	contract (basestring): One or more contract names to resolve.

	
	class_type (type): One or more classes to resolve with

	constructor parameters injected.

	
	class_args (tuple): (Optional) Collection of arguments to pass

	to a resolving class’s positional arguments (*args) instead
of resolving parameters via the injector.

	
	class_kwargs (dict): (Optional) Collection of key-word arguments

	to pass to a resolving class’s keyword arguments (*kwargs)
instead of resolving parameters via the injector.

The resolved object instance or tuple of instances if
multiple parameters specified.

	
	sunnydi.ioc.DependencyResolutionException:

	If no contracts or types are specified or if None
type is specified.

	
	sunnydi.ioc.ComponentNotRegisteredException:

	If a binding for the specified contract could not be found.

	
is_scope(scope_id)

	Whether or not a child sunnydi.ioc.InjectionScope
with the specified scope id exists for this injector.

Will only return True for scopes created directly from
this injector (not child scopes).

	scope_id (basestring): The unique scope identifier.

True if a scope with the specified id exists,
False if no scope exists.

	
scope(scope_id=None)

	Create a new child sunnydi.ioc.InjectionScope
with the specified scope id or return a previously
created child scope.

It’s recommended to use this method as a context manager in
order to properly dispose of the scope when it’s finished being used.

#!python
with injector.scope(‘my-scope-id’) as my_scope:

obj = my_scope.get(‘my_contract_name’)

If not being used as a context manager, it is mandatory
to manually dispose of the scope via the
sunnydi.ioc.InjectionScope.dispose() method
when finished using the scope. Failure to do so will result
in memory leaks within the application.

#!python
my_scope = injector.scope(‘my-scope-id’)
obj = my_scope.get(‘my_contract_name’)
my_scope.dispose()

	
	scope_id (basestring): (Optional) The unique scope identifier.

	If no scope id is specified, a random uuid.UUID is used
to create a new scope id.

An sunnydi.ioc.InjectionScope

	
class sunnydi.ioc.InjectionScope(scope_id, bindings, parent_scope)

	Dependency injector used for resolving dependencies within a limited scope.

This class is typically not created explicitly, rather it is created from a
parent sunnydi.ioc.Injector by calling scope().

	
dispose()

	

	
get(*args, **kwargs)

	Resolve an instance or instances of the specified
contracts within the specified scope.

	contract (basestring): One or more contract names to resolve.

	
	class_type (type): One or more classes to resolve with

	constructor parameters injected.

	
	class_args (tuple): (Optional) Collection of arguments to pass

	to a resolving class’s positional arguments (*args) instead
of resolving parameters via the injector.

	
	class_kwargs (dict): (Optional) Collection of key-word arguments

	to pass to a resolving class’s keyword arguments (*kwargs)
instead of resolving parameters via the injector.

The resolved object instance or tuple of instances if
multiple parameters specified.

	
	sunnydi.ioc.DependencyResolutionException:

	If no contracts or types are specified or if None
type is specified.

	
	sunnydi.ioc.ComponentNotRegisteredException:

	If a binding for the specified contract could not be found.

	
	sunnydi.ioc.ScopeDisposedException:

	If the scope has been disposed.

	
scope_id

	

	
sunnydi.ioc.inject(f)

	Inject the dependencies for the decorated function.

Each of the function’s parameter names should match
a configured binding name.

If a parameter is included directly, injection is skipped
for that parameter.

	
sunnydi.ioc.get(*args, **kwargs)

	Resolve an instance or instances of the specified contracts.

	contract (basestring): One or more contract names to resolve.

	
	class_type (type): One or more classes to resolve with

	constructor parameters injected.

	
	class_args (tuple): (Optional) Collection of arguments to pass

	to a resolving class’s positional arguments (*args) instead
of resolving parameters via the injector.

	
	class_kwargs (dict): (Optional) Collection of key-word arguments

	to pass to a resolving class’s keyword arguments (*kwargs)
instead of resolving parameters via the injector.

The resolved object instance or tuple of instances if
multiple parameters specified.

Raises:

	
	sunnydi.ioc.DependencyResolutionException:

	If no contracts or types are specified or
if None type is specified.

	
	sunnydi.ioc.ComponentNotRegisteredException:

	If a binding for the specified contract could not be found.

	
sunnydi.ioc.scope(scope_id=None)

	Create a new child sunnydi.ioc.InjectionScope
from the default injector, with the specified scope id or
return a previously created child scope.

It’s recommended to use this method as a context manager in
order to properly dispose of the scope when it’s finished being used.

#!python
import ioc
with ioc.scope(‘my-scope-id’) as my_scope:

obj = my_scope.get(‘my_contract_name’)

If not being used as a context manager, it is mandatory
to manually dispose of the scope via the
sunnydi.ioc.InjectionScope.dispose() method
when finished using the scope. Failure to do so will result
in memory leaks within the application.

#!python
my_scope = ioc.scope(‘my-scope-id’)
obj = my_scope.get(‘my_contract_name’)
my_scope.dispose()

	
	scope_id (basestring): (Optional) The unique scope identifier.

	If no scope id is specified, a random uuid.UUID is used
to create a new scope id.

An sunnydi.ioc.InjectionScope

	
sunnydi.ioc.get_injector(name='Default')

	Get the sunnydi.ioc.Injector registered
with the specified name, the default injector if no name
is specified, or None if no injector is globally registered.

	name (basestring): The injector name (or DEFAULT_INJECTOR).

The named sunnydi.ioc.Injector
(or the default injector if name is not specified)

 Python Module Index

 b |
 s

 		 	

 		
 b	

 	[image: -]
 	
 ballast	

 	
 	
 ballast.service	

 		 	

 		
 s	

 	[image: -]
 	
 sunnydi	

 	
 	
 sunnydi.ioc	

Index

 A
 | B
 | C
 | D
 | G
 | I
 | M
 | N
 | R
 | S

A

 	
 	add_module() (sunnydi.ioc.Module method)

B

 	
 	ballast.service (module)

 	
 	bind() (sunnydi.ioc.Module method)

C

 	
 	ComponentNotRegisteredException

 	
 	configure() (sunnydi.ioc.Module method)

 	create_injector() (sunnydi.ioc.Module method)

D

 	
 	DependencyResolutionException

 	
 	dispose() (sunnydi.ioc.InjectionScope method)

G

 	
 	get() (in module sunnydi.ioc)

 	(sunnydi.ioc.InjectionScope method)

 	(sunnydi.ioc.Injector method)

 	
 	get_injector() (in module sunnydi.ioc)

I

 	
 	inject() (in module sunnydi.ioc)

 	InjectionScope (class in sunnydi.ioc)

 	
 	Injector (class in sunnydi.ioc)

 	is_scope() (sunnydi.ioc.Injector method)

M

 	
 	Module (class in sunnydi.ioc)

N

 	
 	name (sunnydi.ioc.Module attribute)

R

 	
 	register() (sunnydi.ioc.Module method)

S

 	
 	scope() (in module sunnydi.ioc)

 	(sunnydi.ioc.Injector method)

 	scope_id (sunnydi.ioc.InjectionScope attribute)

 	
 	ScopeDisposedException

 	sunnydi (module)

 	sunnydi.ioc (module)

 nav.xhtml

 Table of Contents

 		SunnyDI IoC Container

 		Installation

 		Pip Install

 		Get the Source Code

 		Advanced Usage

 		Configuring the LoadBalancer

 		Dynamic Server Discovery

 		DNS

 		Consul REST API

 		Load-Balancing Rules

 		RoundRobinRule

 		PriorityWeightedRule

 		Pinging Servers

 		DummyPing

 		SocketPing

 		UrlPing

 		Ping Strategies

 		SerialPingStrategy

 		ThreadPoolPingStrategy

 		MultiprocessingPoolPingStrategy

 		SunnyDI api reference

 		Inversion of Control

 		Getting Started

 		Advanced Configuration

 		Resolving Instances

 		Global Injector

_static/file.png

_static/minus.png

_static/comment.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

_static/comment-close.png

_static/comment-bright.png

